Current status and future perspectives of oral HPV testing in the diagnosis and monitoring of oropharyngeal cancer. A review

Zuzana Horákova, Ivo Starek, Richard Salzman

HPV16 status in oropharyngeal cancer (OPC) is an important prognostic factor. Its determination, based on immunistochemical analysis of p16 oncoprotein requires an invasive biopsy. Thus, alternative methods are being sought. Determining oral HPV16 status appears to be a promising alternative. However, it is not used routinely. This prompted us to perform a systematic literature review enabling us to evaluate the diagnostic and predictive ability of this approach. Thirty-four relevant studies were finally selected. For determination of HPV status in OPC, the calculated average sensitivity and specificity for oral sampling was 74% and 91%, respectively, with p16 tumour tissue marker being the gold standard. The method appears to be valuable in monitoring treatment response as well as the biological activity of the tumour, enabling early detection of persistent or relapsing carcinoma sufficiently long before its clinical and/or radiological manifestation. It can also contribute to identification of the primary tumour in cases of metastases of unknown origin. Last but not least, the screening HPV oral testing would help to identify individuals with persistent HPV oral infection who are at increased risk of development of OPC.

Key words: head neck cancer, human papilloma virus, oropharyngeal cancer, oral HPV infection, oncologic marker

Received: June 15, 2023; Revised: September 12, 2023; Accepted: October 2, 2023; Available online: October 20, 2023 https://doi.org/10.5507/bp.2023.040

© 2023 The Authors; https://creativecommons.org/licenses/by/4.0/

Clinic of ENT and Head and Neck Surgery, University Hospital Olomouc, Palacky University Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic

Corresponding author: Richard Salzman, e-mail: richard.salzman@fnol.cz

INTRODUCTION

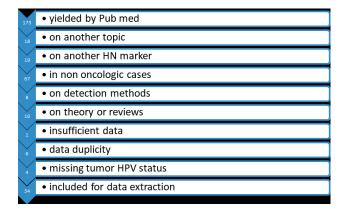
Squamous cell carcinoma of the head and neck is the sixth most common human malignancy worldwide with oropharyngeal cancer (OPC) accounting for 3–5% of all malignant tumours. In general, the incidence of head and neck cancer has dropped in the past three decades, probably due to decreased tabacco and alcohol comsumption. On the other hand, significantly growing incidence of HPV-associated OPC (HPVOPC) has been evident over the last 30 years¹⁻³.

Data show that HPVOPC is a distinct entity characterized by better treatment sensitivity and prognosis compared to "traditional" OPC (ref.^{1,4}). Consequently, the TNM classification has recently accepted HPV status as up to now the only non-clinical prognostic marker in OPC, whose positivity is expected to de-escalate treatment protocols^{5,9}.

Testing of HPV status is based on analysis of p16 on-coprotein in a biopsy specimen. However, this may fail in cases with clinically inapparent primary or recurrent tumours and is useless in monitoring tumour progression and therapy response. These flaws are not intrinsic to detection of HPV DNA/RNA and relevant antibodies in blood or gargle oral samples. This systematic review summarizes so far published papers on methods of determining oral HPV status and its relation to the presence and biological activity of HPV associated OPC. The results are expected to highlight recent advantages of these methods in the diagnostics and follow up of this tumour.

AIMS AND METHODOLOGY

For identification of relevant articles, a PubMed assisted literature search was performed using the following key words: (HPV OR human papillomavirus) AND (oral OR oropharyngeal OR pharyngeal) AND (cancer OR carcinoma OR tumour OR neoplasm) AND (saliva OR rinses OR gargle OR swab). Using this search, 170 studies published in the past 30 years (1990–2020) were identified, and 3 more studies were found from citations. A total of 173 full-text articles were reviewed.


Of these 139 articles were excluded for the following reasons:

- a/ 18 studies on a topic different from HPV
- b/ 19 studies on other than HPV marker in HNC
- c/ 67 studies on healthy or non-oncologic subjects
- d/ 8 studies solely on techniques of HPV detection, without relevant clinical data
- e/ 16 studies on theoretical aspects of HPV associated carcinogenesis or reviewed results of the previously published ones, included in our study
- f/ 1 study lacked sufficient relevant clinical data
- g/ 6 studies elaborated data included as a subset of previous larger studies
- h/ 4 studies lacked correlation of the HPV oral status with that of tumour tissue

Finally, 34 studies were analysed. (Fig. 1)

Data extraction

The following information was extracted from each of the 34 articles: cancer type and location, number and types of controls (healthy or non-oncologic subjects), testing method for HPV in tumour tissue and oral swabs and/or gargle samples, p16 in situ hybridization (ISH), HPV DNA or mRNA polymerase chain reaction (PCR), detection of specific anti HPV antibodies, changes in DNA methylation, HPV type, and results of statistical comparison of oral vs. tumoural HPV status (sensitivity, specificity, accuracy, positive and negative predictive values).

Fig. 1. The flowchart of the process of selection of the studies included in the review.

Table 1. Studies included in the review.

Author	Method of HPV detection	HPV type	Tumour location	Study design	Conclusion	Ref.
Agrawal, 2009	PCR	16	HN	diagnostic, monitoring	posttreatment monitoring and early detection of recurrence	10
Ahn, 2014	PCR	16	OP	diagnostic, monitoring, prognostic	posttreatment monitoring and early detection of recurrence	11
Asvadi, 2012	PCR	16; 18	HN	screening	significant difference in case and control groups	12
Auguste, 2017	PCR	16	HN	screening	significant difference in case and control groups	13
Bhosale, 2016	PCR	16	HN	screening	does not necessarily reflect transcriptionally active virus in tumours	14
Cohen, 2017	PCR; Ab	16	OP	diagnostic, monitoring	prediction HPV tumour status	15
D'Souza, 2014	PCR	16	OP	screening	oral HPV16 infection is commonly detected among patients with HPV-OPC at diagnosis, but not among their partners	16
Dang, 2015	PCR	16; 18	OP	screening, diagnostic	significant difference in case and control groups	17
Fakhy, 2019	PCR	16; HR	OP + OC	monitoring	posttreatment monitoring and early detection of recurrence	3
Giuliano, 2019	DNA methylation	16	OP	screening, diagnostic	DNA methylation as HPV-tumour biomarkers	18
Grewal, 2018	PCR; Ab	16; 18	OP	diagnostic	prediction HPV tumour status	19
Hama, 2014	PCR	16	OP	diagnostic	prediction HPV tumour status	20
Hama, 2017	Ab	16	OP	monitoring, prognostic	posttreatment monitoring and early detection of recurrence	21
Hanna, 2019	PCR	16	OP	monitoring, prognostic	posttreatment monitoring and early detection of recurrence	22
Hettman, 2018	PCR	16; 13	HN	screening, diagnostic	predicts HPV tumour status	23
Chai, 2016	PCR	16	HN	diagnostic	prediction HPV tumour status	24
Chuang, 2008	PCR	16	HN	monitoring	posttreatment monitoring and early detection of recurrence	25
Imai, 2016	PCR	16	OP	diagnostic	prediction HPV tumour status limited in very small tumours	26
Isaak, 2017	PCR	16	OP + OC	screening, diagnostic	prediction HPV tumour status	27
Khyani, 2015	PCR	16; 18	OC	screening, diagnostic	limited due to small sample size	28

Table 1. (Continued)

Koslabova, 2013	Ab	16	OP	monitoring,	prediction HPV tumour status, monitoring	29
				prognostic	treatment responce and early detection of recurrence	
Lim, 2016	DNA methylation	16	HN	screening, diagnostic	DNA methylation as HPV-tumour biomarkers	30
Martin, 2019	PCR	16	OP	diagnostic	prediction HPV tumour status, significantly lower among younger cases and earlier disease	31
Nordfors, 2014	PCR	16; 18; HR	OP	screening, diagnostic	prediction HPV tumour status	32
Qureishi, 2018	PCR	16	OP	diagnostic	prediction HPV tumour status	33
Rettig, 2015	PCR	16	OP	monitoring, prognostic, predictive	posttreatment monitoring and early detection of recurrence	34
Rosentahl, 2017	PCR	HR	OP + OC	screening, diagnostic	prediction HPV tumour status; a potentially useful screening test	35
Smith, 2004	PCR	16; 18; HR	OP + OC	diagnostic	prediction HPV tumour status	36
Tang, 2019	PCR	16	OP	diagnostic	prediction HPV tumour status; a potentially useful screening test	37
Tsao, 2016	PCR	HR	OP	screening, diagnostic	Partners of OPC patients may have a higher prevalence	38
Wang, 2014	PCR	16	HN	diagnostic, monitoring	prediction HPV tumour status	39
Wasserman, 2017	PCR	HR	HN	diagnostic	prediction HPV tumour status	40
Yoshida, 2017	PCR	16	OP	monitoring	posttreatment monitoring and early detection of recurrence	41
Zhao, 2005	PCR	16	HN	screening, diagnostic	prediction HPV tumour status; limited for population sccreening	42

RESULTS

Of the 34 articles reviewed, only four 10,26,37,43 were published before 2010 (Table 1).

Eleven studies reported SCC of various head and neck locations ^{10,12-14,24-26,31,40,41,43}, four were restricted to carcinoma of the oropharynx and oral cavity (OCC) (ref. ^{18,28,36,37}). Seventeen and one paper dealt exclusively with OPC (ref. ^{11,15-17,19,20-23,27,30,32-35,38,39,42}) and OCC (ref. ²⁸), respectively. The oral HPV status was analysed separately for OPC in all but the one study ¹². Generally, better correlation between the HPV status of oral gargles and tumour tissue was evident in OPC than in other carcinomas.

PCR analysis of oral samples was performed in 32 studies, 29 (ref. 3,10-13,14,16-18,20-24,26,27,29,30,32-42) and 3 (ref. 14,25,28) of which used HPV16 DNA and HPV16 E6/E7 mRNA, respectively. In 4 of them 15,20,22,30, HPV antibodies were also used. DNA methylation was applied in 2 studies 19,31.

Twenty-three studies tested solely the HPV16 (ref. ^{10,11,13-16,19,21-23,25-28,30-32,34,35,38,40,42,43}), eight others analysed also other high-risk HPV types ^{12,17,18,20,24,29,33,37} and three, the latter exclusively ^{36,39,41}. In all the above cited studies, there was better correlation between oral and tumour HPV status for HPV16 than for high-risk HPV types.

HPV status of tumour tissue samples was assessed solely by p16 protein expression in 11 studies^{10,14,15,22,25,28,31,36,41-43}, by both the p16 IHC and PCR HPV

DNA in 4 studies^{27,32,34,39}, while only PCR was performed in 19 studies^{11-13,16-21,23,24,26,29,30,33,35,37,38,40}.

The type of control group varied with the study design. Non-oncologic and healthy subjects were enrolled in 16 (ref. ¹²⁻¹⁴, ¹⁶⁻¹⁹, ²⁴, ²⁸, ²⁹, ³¹⁻³³, ³⁶, ³⁹, ⁴³) and 12 studies ¹³, ¹⁷⁻¹⁹, ²⁴, ²⁸, ²⁹, ³¹, ³³, ³⁶, ⁴³, respectively, one study included both control groups ²⁹. Five studies tested patients with premalignant mucosal lesions ¹⁴, ¹⁶, ²⁹, ³², ³⁶.

The number of control subjects in particular studies ranged from 20 to 604 cases, that of patients with carcinoma from 14 to 218 cases (Fig. 2).

Twelve studies tested the HPV oral status as a predictor of biological activity of carcinomas ^{10,11,15,16,18,22,23,26,30,35,40,42}. Sixteen papers compared that status in carcinoma vs. control subjects ^{12-14,16-19,24,28,29,31-33,36,39,43} and 33 others compared the HPV oral status in HPV positive to negative tumours ^{3,10-21,23-42}.

DISCUSSION

Epidemiology

HPV oral infection affects mostly young populations and is present in about 11% of newborns. The virus is usually eliminated within one year. However, it persists for more years in about 4% of infected subjects. In general, the average prevalence of oral HPV16 infection is

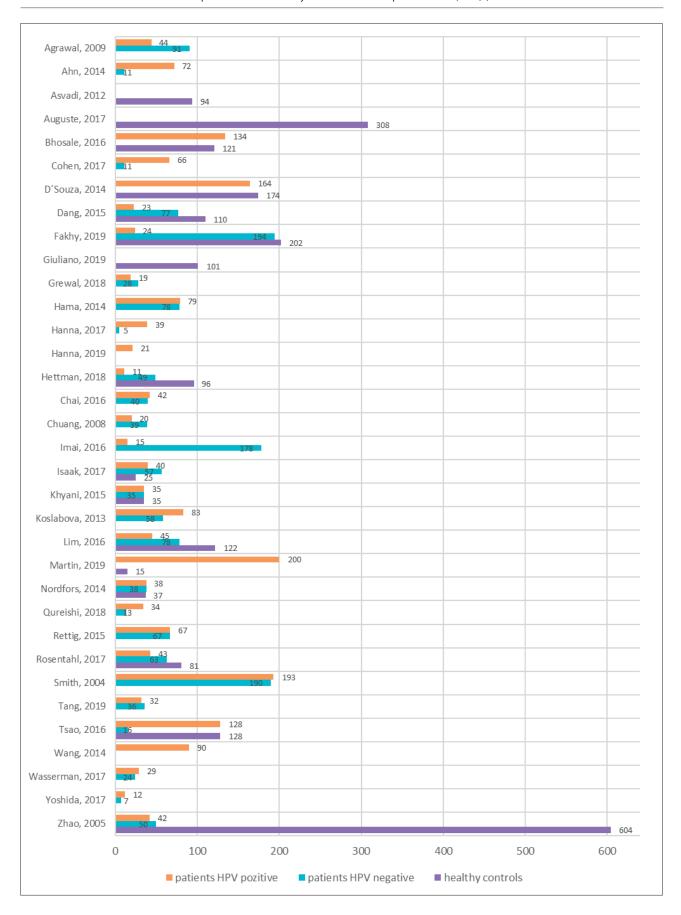
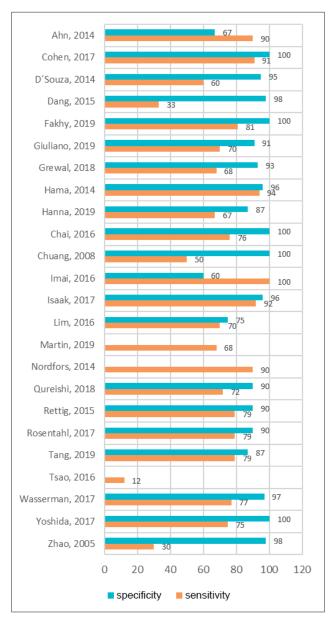



Fig. 2. Number of patients and controls in sets of included studies.

Fig. 3. Sensitivity and specificity of oral HPV16 test for detection of OPC of reviewed studies.

about 1%, seropositivity is found in 0.5-5% of healthy individuals, with two peak ages of 25-30 and 55-60 years, respectively^{3,43-45}.

Oral HPV infection and its role in cancerogenesis

The presence of oral HPV DNA in salivary rinses or swabs reflects the inability of the organism to eliminate infected cells. The viral particle can spread throughout the body by vesicular transport, ultrafiltration, passive diffusion, active transport or directly released from disintegrated tumour cells. Therefore, positive HPV DNA finding in oral samples is considered to be a marker of either latent infection or the presence of an HPV associated carcinoma⁴³.

Persistent HPV infection may give rise to a carcinoma with a latency ranging from 10 to 30 years⁴⁵. Viral DNA integrates into the host DNA eliciting up-regulated expression of E6 or E7 oncoproteins. They interfere with the

activity of tumour suppressors p53 and Rb by promoting their degradation with subsequent upregulation of the host protein p16. This pathway leads to anti-apoptosis, genetic instability and promotion of carcinogenesis³.

Diagnostic methods Liquid biopsy

HPV can be discovered at different stages of its biological activity by identifying viral mRNA, DNA or incorporation of the latter into the host DNA or downstream viral (E6, E7) or host (p16) proteins.

HPV is detectable in various types of biologic samples, e.g. tissues, cytologic aspirates or swab, liquids (blood, saliva, urine).

Analytic methods based on blood sampling, called liquid biopsies, have gained popularity in recent years. Compared to tissue testing, these methods are much less invasive, minimizing the risk of inconclusive fine-needle aspiration or tissue biopsy, primarily in a case of a small tumour arising in a post-radiation-altered area.

The proof of cancer presence with liquid biopsy is based on detection of selected tumour-specific cell-free DNA (cfDNA) mutations. This method is not only of diagnostic benefit, but has prognostic and predictive value too.

Some of these biomarkers can be measured in blood as well as other body fluids, including saliva^{46,47}. The liquid biopsy method is rarely used in monitoring biological activity in EBV-associated nasopharyngeal carcinoma^{48,49}. Similarily, tumour specific cfDNA as well as non-tumoural HPV DNA can be detected in blood and saliva^{47,50}.

HPV detection

Viral DNA is usually detected with two methods, namely conventional polymerase chain reaction (PCR) and in situ hybridization (ISH). PCR-based methods are very sensitive and can be performed on frozen or formalin-fixed paraffin embedded tissue as well as cytological specimens taken with fine-needle aspiration cytology or oral swabs⁵¹. Detection of viral HPV E6/E7 mRNA by reverse transcriptase PCR (RT-PCR) or by ISH has become popular and is regarded as the "new gold standard" for detecting a transcriptionally active HPV infection^{16,52}.

Cost and time-effective immunohistochemical detection of p16 protein showing at least 90% sensitivity and specificity⁵³, has been accepted as a proof of HPV tumour etiology. Expression of the surrogate oncoprotein is scored as positive when the cut-off value is reached at least by 70% of tumour cells revealing diffuse and strong nuclear and cytoplasmic reactivity^{51,52}.

In the reviewed studies, tissue HPV analysis based on DNA or mRNA detection predominated, in a large number of studies^{11-13,16-21,23,24,26,29,30,33,35,37,38,40} these methods were combined with p16 testing, in 12 others^{10,14,15,22,25,27,28,31,36,41,43} but only the latter was applied.

Commercially available certified smear HPV tests used primarily in cervical cancer screening are based on PCR detection of amplified specific HPV DNA sequences E6/E7, mRNA or DNA (ref. 11,16,21,22,39). These PCR meth-

ods providing not only qualitative³⁶ but also quantitative⁴² analysis of viral load within the tumour are very sensitive, able to detect as little as 0.001 copy per HPV-16 DNA genome^{3,11}. Quantitative analysis would be useful in monitoring the disease activity as HPV levels are related to tumour burden in both plasma and saliva^{21,22,36,37}.

Unfortunately, the techniques of sampling and analysis have not been fully standardized and reliable cut-off value of number of HPV-16 DNA copies has not been set so far^{21,22,37}.

A previously published review showed that as fluid markers of the presence of HPV infection in human body cells, PCR detected HPV DNA or mRNA are mostly used, with sensitivity and specificity approaching 100% (ref.⁵¹).

Other methods, such as detection of E6, E7 and L1 antibodies, miRNA, cell-free viral DNA or episomal DNA methylation are not routinely performed ^{18,21,29,30,47,51,52}. For oral rinses, the sensitivity and specificity of the antibody tests range from 91–96% and 96–98%, respectively ^{16,54}. Comparable efficacy (sensitivity and specificity range of 70–72% and 90–95%, respectively) was recorded for oral swabs ^{7,39,55,56}.

Correlation of HPV tests of oral and tissue samples

The sensitivity and specificity of all oral HPV tests in detection of HPV positive status of pharyngeal SCCs was determined in 24 studies^{11,15-21,23,25,26-28,31-36,38,39,41-43}. The average sensitivity and specificity of rinse and swab HPV tests were 74% (range 30–100%) and specificity of 91% (ranging 50 to 100%), respectively^{11,15-21,23,25,26-28,31-36,38,39,41-43} (Fig. 3). These results are very similar to those published by Gibson⁵⁶ who in his early review found an average sensitivity of 72%, and specificity 94%.

Our review demonstrated that the accuracy of all oral HPV tests was higher for HPV-16 than for other highrisk HPV types^{17,18,20,24,29,33,37,57}. Many studies revealed better results for OPC than for cancers of other locatio ns^{10,13,14,2426,31,40,41,43}.

Wang³⁹ detected the presence of HPV-16 in saliva in 47% to 70% of patients diagnosed with HPV positive carcinomas. The HPV-16 positivity prevalence also depended on the tumour location. By combining saliva and blood tests, the sensitivity rises to 100% in oral, laryngeal and hypopharyngeal carcinomas and 91% of those originating in the oropharynx. The benefit of that combination has been confirmed also by Ahn in OPC, reporting sensitivity increase from 53% for oral sampling only to 76% and 100% specificity and positive predictive value, respectively¹¹. Similarly, Hanna confirmed 100% sensitivity and specificity in detection of recurrent or persisting HPV+OPCs (ref.²¹).

Thus, in OPC patients, detection of HPV-DNA in oral samples (saliva, gargles, swab) may provide a rapid non-invasive way to determine the HPV status of carcinomas, and, eventually replace the p16 tissue biopsy test. Moreover, the liquid oral HPV PCR testing represents a promising diagnostic tool in patients with cervical lymph nodes metatastasis from unknown primary. In one study, 100% sensitivity and 92% specificity of HPV-DNA detec-

tion was reported, leading to a targeted biopsy from relevant areas, i.e. primarily palatine tonsil or base of the tongue, where small carcinomas may go undetected¹⁵.

Screening of HPVOPC

HPV-PCR testing of oral samples is expected to become very valuable in the screening, diagnostics and follow-up of HPV-associated ENT carcinomas. Therefore, this topic was addressed by many population studies focused on identification of the most effective PCR methods.

Unfortunately, the screening capability of the HPV tests of oral samples has the following limitations: about 8% of healthy subjects test as false positive^{3,16,43}, which may put them under unnecessary psychological stress^{16,35,41}. Detection of a persistent HPV infection could select the population at risk of HPV positive carcinomas, though, but the sensitivity of relevant tests does not exceed 75%, leaving at least some HPV infected tumour candidates undetected⁵⁶.

The reported specificity of oral HPV tests appears to be sufficient for population screening, but only some of the positively tested patients develop OPC. This makes the tests inapplicable for one step definitive detection of OPC by a population based screening test. However, HPV tests can be useful in subjects with immunosuppresion, poor oral hygiene, risky sexual practices and smokers which have higher risk of OPC development lose, In these cases, blood samples should also be taken, increasing diagnostic accuracy of the screening (vide supra) (ref. 11,16,22,40,54,57). For the monitoring of potential tumour initiation, only the proof of a persistent HPV oral infection if performed by consecutive positive tests, is significant.

However, there is a lack of concensus on the approprate time interval both for repeating the tests in the atrisk population after the first negative test or for follow-up testing after the first positive detection of HPV DNA to confirm the persistence of the infection^{16,58}.

Oral HPV tests in the surveillance of recurrent or persistent HPVOPC

Locoregional posttreatment surveillance of recurrent or persisting head and and neck carcinomas may be difficult due to tissue and anatomical alterations developed secondary to preceding surgery and/or radio(chemo) therapy which reduces the accuracy of imaging methods and complicates the biopsy sampling, which in addition must be frequently performed repeatedly and under general anestesia^{59,60}. For these purposes, fusion of positron emission tomography and computed tomography (PET/CT) reaching 94% sensitivity and 82% specificity is recommended. Diagnostic potential of this method is limited mainly due to incapability to detect small or superficially growing tumours. Moreover, the relatively low (75%) positive predictive value may result into an inadequate therapeutic scenario in false-positively tested patients⁴⁶.

Liquid biopsy based on detection of either viral or tumour cell-free circulating nucleic acids proved to be a prospective, diagnostic, predictive and prognostic method for EBV associated nasopharyngeal and other head and neck non-viral carcinomas⁴⁶. Similarly, in HPV positive

tumours, analysis of blood and/or saliva HPV16 DNA emerges as a promising tool in monitoring the presence and biologic activity of both primary and recurrent tumours. This would be mainly helpful in discovering of microscopic tumours undetectable with conventional biopsy or clinical and imaging methods as well as in prediction of the disease relapse and in selected high-risk patients suitable for high-intensity treatment or closer monitoring.

In twelve studies monitoring saliva HPV16 DNA/RNA levels, the presence of a recurrent or persistent tumour was predicted with sensitivity and specificity exceeding 74% and 92%, respectively^{10,11,15,16,18,22,23,26,30,35,40,42}. Similar results, with positive and negative predictive value of 100% and 89%, respectively, were reported by Chuang using exclusively the saliva HPV16 DNA test²⁵. It is of considerable clinical significance, that the method is reliable in detection of small locoregional recurrences as early as 19 months before their clinical manifestations^{11,25,34}.

Retting³⁴ assessed the capability of the posttreatment saliva HPV16-DNA test in prediction of a tumour recurrence. Persistent oral HPV16-DNA was associated with a higher risk of recurrence (hazard ratio 29.7) and risk of death (hazard ratio 23.5). In all patients with persistent oral HPV16-DNA but only in 8% of those without persistent oral HPV16-DNA a recurrence has developed. The oral HPV16-DNA was detected 4–11 months before the recurrence was diagnosed.

Hanna²¹ found 20-times higher salivary HPV16-DNA in patients with a solely local tumour than in those with distant matastases only. In the latter cases however, the plasma HPV16-DNA levels were significantly higher than the salivary ones²². In a previous study, the author analysing salivary HPV antibodies found out that their persisting levels indicated treatment failure with sensitivity 87%, specificity 67%. A combination of salivary and plasmatic HPV antibody levels increased sensitivity to 100% (ref.²²).

Chuang²⁵ reported 50% sensitivity and specificity of positive saliva HPV16 DNA test in prediction of a local tumour recurrence. For detection of distant metastases, 60% specificity of positive blood HPV DNA test was recorded by Capone⁴².

Ahn¹¹ in his multivariate analysis found out that positive posttreatment saliva HPV16-DNA status identified patients with significantly higher risk of a recurrence and disease associated death (hazard ratio 10.7 and 25.9, respectively), and the 3-year specific disease-free survival was predicted with 19% sensitivity and 97% specificity. When combined with plasma posttreatment HPV-16 DNA status, the two mentioned test parameters reached 70% and 91%, respectively. These values are even better than those reported for the PET/CT scans⁶¹.

CONCLUSIONS

In this systematic review of published literature, we summarized 34 studies focused on oral HPV16 sampling and its applicability in clinical aspects of HPV16 associated OPC. For determination of the HPV status of OPC,

the calculated average sensitivity and specificity was 74% and 91%. This method appears to be valuable in the monitoring of treatment response as well as biological activity of the tumour, suggesting early detection of persistent or relapsing tumours sufficiently long before their clinical and/or radiological manifestation.

Based on the review performed, we would believe that oral sample testing would be most useful for clinical practice during the post-treatment period. First, it would help in the evaluation of treatment results, i.e. the identification of residual tumor. In addition, it could provide prognostic information, i.e. select patients who are at increased risk of recurrence and will benefit from closer follow-up. And above all, this inexpensive and minimally burdensome method for the patient can be repeated at regular intervals, optimally together with blood sample testing. If the dynamics of oral HPV DNA values were correlated with the activity of the disease, it could allow an early diagnosis of a recurrence. The tangible benefit of this marker is mostly important in diagnoses in which regular clinical examinations and imaging methods are of limited significance.

That sampling should be employed in a diagnostic procedure of identification of the primary in cases of metastases of unknown origin. Last but not least, the screening HPV oral testing could help to identify individuals with persistent HPV oral infection who are at increased risk of developing OPC.

We would suggest to include HPV testing of oral samples as a non-invasive, easy-to-perform and sufficiently accurate method that could be part of regular post-treatment follow-up of patients with HPVOPC.

This method could be very useful not only in clinical practice but also as a form of self-examination for regular preventive testing of individuals at risk of developing OPC.

Search strategy and selection criteria

Our research strategy was aimed at evaluating studies on the role of the oral detection of HPV infection to determine if they can be used as marker of oropharyngeal squamous cell carcinoma. Scientific articles from 1990 to 2020 were searched using the PubMed database. All searches were up to date as of December 2020. The search terms used included: "HPV OR human papillomavirus" AND "oral OR oropharyngeal OR pharyngeal" AND "cancer OR carcinoma OR tumour OR neoplasm" AND "saliva OR rinses OR gargle OR swab". Only English language papers were reviewed.

Acknowledgement: Supported by Ministry of Health, Czech Republic - conceptual development of research organization (FNOL, 00098892) and internal research IGA LF 2023-8.

Author contributions: ZH, IS: study design, manuscript writing; ZH: performed the database search and data extraction; RS: supervised the project; All authors discussed the results and contributed to the final manuscript.

Conflict of interest statement: None declared.

REFERENCES

- Binkova H, Horakova Z, Kostrica R, Vesely K. Increasing incidence of HPV related oropharyngeal cancers Otorinolaryngol foniatr 2015;64:205-12.
- Dusek L, Muzik J, Kubasek M. Epidemiology of malignant tumours in the Czech Republic. Masaryk university [Online] 2021 Available from: https://www.svod.cz/
- Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J Clin Oncol 2015;33(29):3235-42.
- 4. Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol 2006;24(17):2606-11.
- 5. Brierley JD, Gospodarowicz MK, Wittekind Ch. TNM classification of malignant tumours, 8th edition. Wiley-Blackwell; 2017.
- Dahm V, Haitel A, Kaider A, Stanisz I, Beer A, Lill C. Cancer stage and pack-years, but not p16 or HPV, are relevant for survival in hypopharyngeal and laryngeal squamous cell carcinomas. Eur Arch Otorhinolaryngol 2018;275(7):1837-43.
- Liu C, Talmor G, Low GM, Wang TV, Mann DS, Sinha UK, Kokot NC. How does smoking change the clinicopathological characteristics of human papillomavirus-positive oropharyngeal squamous cell carcinoma? Clin Med Insights Ear Nose Throat 2018;11:1179550618792248.
- Wittekindt C, Wagner S, Sharma SJ. HPV A different view on head and neck cancer. Laryngorhinootologie 2018;97(S 01):S48-S113.
- Naghavi AO, Strom TJ, Ahmed KA, Echevarria MI, Abuodeh YA, Venkat PS, Frakes JM, Harrison LB, Trotti AM, Caudell JJ. Management of oropharyngeal cancer in the HPV era. Cancer Control 2016;23(3):197-207.
- Agrawal Y, Koch WM, Xiao W, Westra WH, Trivett AL, Symer DE, Gillison ML. Oral human papillomavirus infection before and after treatment for human papillomavirus 16-positive and human papillomavirus 16-negative head and neck squamous cell carcinoma. Clin Cancer Res 2008;14(21):7143-50.
- Ahn SM, Chan JY, Zhang Z, Wang H, Khan Z, Bishop JA, Westra W, Koch WM, Califano JA. Saliva and plasma quantitative polymerase chain reaction-based detection and surveillance of human papillomavirus-related head and neck cancer. JAMA Otolaryngol Head Neck Surg 2014;140(9):846-54.
- Asvadi Kermani I, Seifi SH, Dolatkhah R, Sakhinia E, Dastgiri S, Ebrahimi A, Lotfy A, Esmaeili HA. Human papilloma virus in head and neck squamous cell cancer. Iran J Cancer Prev 2012;5(1):21-6.
- Auguste A, Gaëte S, Herrmann-Storck C, Michineau L, Joachim C, Deloumeaux J, Duflo S, Luce D. Prevalence of oral HPV infection among healthy individuals and head and neck cancer cases in the French West Indies. Cancer Causes Control 2017;28(11):1333-40.
- Bhosale PG, Pandey M, Desai RS, Patil A, Kane S, Prabhash K, Mahimkar MB. Low prevalence of transcriptionally active human papilloma virus in Indian patients with HNSCC and leukoplakia. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122(5):609-618.e7.
- Cohen N, Gupta M, Doerwald-Munoz L, Jang D, Young JE, Archibald S, Jackson B, Lee J, Chernesky M. Developing a new diagnostic algorithm for human papilloma virus associated oropharyngeal carcinoma: an investigation of HPV DNA assays. J Otolaryngol Head Neck Surg 2017;46(1):11.
- D'Souza G, Gross ND, Pai SI, Haddad R, Anderson KS, Rajan S, Gerber J, Gillison ML, Posner MR. Oral human papillomavirus (HPV) infection in HPV-positive patients with oropharyngeal cancer and their partners. J Clin Oncol 2014;32(23):2408-15.
- 17. Dang J, Feng Q, Eaton KD, Jang H, Kiviat NB. Detection of HPV in oral rinse samples from OPSCC and non-OPSCC patients. BMC Oral Health 2015;15(1):126.
- 18. Giuliano AR, Nedjai B, Lorincz AT, Schell MJ, Rahman S, Banwait R, Boulware D, Sirak B, Martin-Gomez L, Abrahamsen M, Isaacs-Soriano KA, Wenig B, Chung CH, Caudell J. Methylation of HPV 16 and EPB41L3 in oral gargles: Associations with oropharyngeal cancer detection and tumour characteristics. Int J Cancer 2020;146(4):1018-30
- Grewal RK, Sircar K, Bhat KG, Grewal DS, Tyagi KK, David S. Detection of human papilloma virus-E6/E7 proteins of high-risk human papilloma virus in saliva and lesional tissue of oral squamous cell carcinoma patients using nested multiplex polymerase chain reaction: A comparative study. J Oral Maxillofac Pathol 2018;22(3):318-24.

- Hama T, Tokumaru Y, Fujii M, Yane K, Okami K, Kato K, Masuda M, Mineta H, Nakashima T, Sugasawa M, Sakihama N, Yoshizaki T, Hanazawa T, Kato H, Hirano S, Imanishi Y, Kuratomi Y, Otsuki N, Ota I, Sugimoto T, Suzuki S. Prevalence of human papillomavirus in oropharyngeal cancer: a multicenter study in Japan. Oncology 2014;87(3):173-82.
- Hanna GJ, Lau CJ, Mahmood U, Supplee JG, Mogili AR, Haddad RI, Jänne PA, Paweletz CP. Salivary HPV DNA informs locoregional disease status in advanced HPV-associated oropharyngeal cancer. Oral Oncol 2019:95:120-6.
- Hanna GJ, Sridharan V, Margalit DN, La Follette SK, Chau NG, Rabinowits G, Lorch JH, Haddad RI, Tishler RB, Anderson KS, Schoenfeld JD. Salivary and serum HPV antibody levels before and after definitive treatment in patients with oropharyngeal squamous cell carcinoma. Cancer Biomark 2017;19(2):129-36.
- 23. Hettmann A, Demcsák A, Bach Á, Decsi G, Dencs Á, Pálinkó D, Rovó L, Terhes G, Urbán E, Buzás K, Nagy K, Takács M, Minarovits J. Prevalence and genotypes of human papillomavirus in saliva and tumour samples of head and neck cancer patients in Hungary. Infect Genet Evol 2018;59:99-106.
- Chai RC, Lim Y, Frazer IH, Wan Y, Perry C, Jones L, Lambie D, Punyadeera C. A pilot study to compare the detection of HPV-16 biomarkers in salivary oral rinses with tumour p16(INK4a) expression in head and neck squamous cell carcinoma patients. BMC Cancer 2016:16:178.
- 25. Chuang AY, Chuang TC, Chang S, Zhou S, Begum S, Westra WH, Ha PK, Koch WM, Califano JA. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral Oncol 2008;44(10):915-9.
- Imai T, Sato I, Matsumoto K, Asada Y, Kato K, Sogai S, Watanabe K, Sadayasu R, Saijo S, Matsuura K. Human papilloma virus detection in oropharyngeal cancer with gargle samples. B-ENT 2016;12(4):263-9.
- 27. Isaac A, Kostiuk M, Zhang H, Lindsay C, Makki F, O'Connell DA, Harris JR, Cote DW, Seikaly H, Biron VL. Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs. J Otolaryngol Head Neck Surg 2017;46(1):5.
- 28. Khyani IA, Qureshi MA, Mirza T, Farooq MU. Salivary detection of human Papilloma virus 16 & 18 in pre-malignant and malignant lesions of oral cavity: Is it feasible in Pakistani context of Socio-Cultural Taboos? Pak J Med Sci 2015;31(5):1104-9.
- 29. Koslabova E, Hamsikova E, Salakova M, Klozar J, Foltynova E, Salkova E, Rotnaglova E, Ludvikova V, Tachezy R. Markers of HPV infection and survival in patients with head and neck tumours. Int J Cancer 2013;133(8):1832-9.
- 30. Lim Y, Wan Y, Vagenas D, Ovchinnikov DA, Perry CF, Davis MJ, Punyadeera C. SalivarySalivary DNA methylation panel to diagnose HPV-positive and HPV-negative head and neck cancers. BMC Cancer 2016;16(1):749. doi: 10.1186/s12885-016-2785-0.16:749.
- Martin-Gomez L, Fulp WJ, Schell MJ, Sirak B, Abrahamsen M, Isaacs-Soriano KA, Lorincz A, Wenig B, Chung CH, Caudell JJ, Giuliano AR.
 Oral gargle-tumour biopsy human papillomavirus (HPV) agreement and associated factors among oropharyngeal squamous cell carcinoma (OPSCC) cases. Oral Oncol 2019;92:85-91.
- 32. Nordfors C, Vlastos A, Du J, Ahrlund-Richter A, Tertipis N, Grün N, Romanitan M, Haeggblom L, Roosaar A, Dahllöf G, Donà MG, Benevolo M, Ramqvist T, Munck-Wikland E, Dalianis T. Human papillomavirus prevalence is high in oral samples of patients with tonsillar and base of tongue cancer. Oral Oncol 2014;50(5):491-7.
- 34. Rettig EM, Wentz A, Posner MR, Gross ND, Haddad RI, Gillison ML, Fakhry C, Quon H, Sikora AG, Stott WJ, Lorch JH, Gourin CG, Guo Y, Xiao W, Miles BA, Richmon JD, Andersen PE, Misiukiewicz KJ, Chung CH, Gerber JE, Rajan SD, D'Souza G. Prognostic implication of persistent human papillomavirus type 16 DNA detection in oral rinses for human papillomavirus-related oropharyngeal carcinoma. JAMA Oncol 2015;1(7):907-15.
- 35. Rosenthal M, Huang B, Katabi N, Migliacci J, Bryant R, Kaplan S, Blackwell T, Patel S, Yang L, Pei Z, Tang YW, Ganly I. Detection of HPV related oropharyngeal cancer in oral rinse specimens. Oncotarget 2017;65(8):109393-401. doi:10.18632/oncotarget.22682

- Smith EM, Ritchie JM, Summersgill KF, Hoffman HT, Wang DH, Haugen TH, Turek LP Human papillomavirus in oral exfoliated cells and risk of head and neck cancer. J Natl Cancer Inst 2004;96:449-55.
- Tang KD, Baeten K, Kenny L, Frazer IH, Scheper G, Punyadeera C. Unlocking the potential of saliva-based test to detect HPV-16-driven oropharyngeal cancer. Cancers 2019;11(4):473.
- Tsao AS, Papadimitrakopoulou V, Lin H, Guo M, Lee JJ, Holsinger FC, Hong WK, Sturgis EM. Concordance of oral HPV prevalence between patients with oropharyngeal cancer and their partners. Infect Agents Cancer 2016:11:21.
- 39. Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J, Sausen M, James N, Rettig EM, Guo T, Pickering CR, Bishop JA, Chung CH, Califano JA, Eisele DW, Fakhry C, Gourin CG, Ha PK, Kang H, Kiess A, Koch WM, Myers JN, Quon H, Richmon JD, Sidransky D, Tufano RP, Westra WH, Bettegowda C, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Agrawal N. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 2015;24293:104.
- Wasserman JK, Rourke R, Purgina B, Caulley L, Dimitroulakos J, Corsten M, Johnson-Obaseki S. HPV DNA in saliva from patients with SCC of the head and neck is specific for p16-positive oropharyngeal tumours. J Otolaryngol Head Neck Surg 2017;46(1):3.
- Yoshida H, Murono S, Ueno T, Nakanishi Y, Tsuji A, Hatano M, Endo K, Kondo S, Sugimoto H, Wakisaka N, Yoshizaki T. Usefulness of human papillomavirus detection in oral rinse as a biomarker of oropharyngeal cancer. Acta Oto-Laryngologica 2007;137:773-7.
- Zhao M, Rosenbaum E, Carvalho AL, Koch W, Jiang W, Sidransky D, Califano J. Feasibility of quantitative PCR-based saliva rinse screening of HPV for head and neck cancer. Int J Cancer 2005;117(4):605-10.
- Trottier H, Mayrand MH, Coutlée F, Monnier P, Laporte L, Niyibizi J, Carceller AM, Fraser WD, Brassard P, Lacroix J, Francoeur D, Bédard MJ, Girard I, Audibert F. Human papillomavirus (HPV) perinatal transmission and risk of HPV persistence among children: Design, methods and preliminary results of the HERITAGE study. Papillomavirus Res 2016;2:145-52.
- Mena M, Taberna M, Monfil L, Arbyn M, de Sanjosé S, Bosch FX, Alemany L, Bruni L. Might oral human papillomavirus (HPV) infection in healthy individuals explain differences in HPV-attributable fractions in oropharyngeal cancer? A systematic review and metaanalysis. J Infect Dis 2019;219(10):1574-85.
- Pierce Campbell CM, Kreimer AR, Lin HY, Fulp W, O'Keefe MT, Ingles DJ, Abrahamsen M, Villa LL, Lazcano-Ponce E, Giuliano AR. Longterm persistence of oral human papillomavirus type 16: the HPV Infection in Men (HIM) study. Cancer Prev Res 2015;8(3):190-6.
- van Ginkel JH, Huibers MMH, Noorlag R, de Bree R, van Es RJJ, Willems SM. Liquid Biopsy: A Future Tool for Posttreatment Surveillance in Head and Neck Cancer? Pathobiology 2017;84(3):115-20.
- Dahlstrom KR, Anderson KS, Cheng JN. Serum antibodies as predictors of survival and disease progression in patients with HPVpositive squamous cell carcinoma of the oropharynx. Clin Cancer Res 2015;21(12):2861-9.
- Chan AT, Lo YM, Zee B, Chan LY, Ma BB, Leung SF, Mo F, Lai M, Ho S, Huang DP, Johnson PJ. Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst 2002;94(21):1614-9.
- Zhang W, Chen Y, Chen L, Guo R, Zhou G, Tang L, Mao Y, Li W, Liu X, Du X, Sun Y, Ma J. The clinical utility of plasma Epstein-Barr virus DNA assays in nasopharyngeal carcinoma: the dawn of a new

- era? a systematic review and meta-analysis of 7836 cases. Medicine 2015:94(20):e845
- 50. Mazurek AM, Rutkowski T, Fiszer-Kierzkowska A, Małusecka E, Składowski K. Assessment of the total cfDNA and HPV16/18 detection in plasma samples of head and neck squamous cell carcinoma patients. Oral Oncol 2016;54:36-41.
- McMullena C, Chunga CH, Hernandez-Prerab JC Evolving role of human papillomavirus as a clinically significant biomarker in head and neck squamous cell carcinoma. Expert Rev Mol Diagn 2019;19(1):63-70
- 52. Borsetto D, Cheng J, Payne K. Surveillance of HPV-positive head and neck squamous cell carcinoma with circulating and salivary DNA biomarkers. Crit Rev Oncog 2018;23(3-4):235-45.
- 53. Nauta IH, Rietbergen MM, van Bokhoven AAJD, Bloemena E, Lissenberg-Witte BI, Heideman DAM, Baatenburg de Jong RJ, Brakenhoff RH, Leemans CR. Evaluation of the eighth TNM classification on p16-positive oropharyngeal squamous cell carcinomas in the Netherlands and the importance of additional HPV DNA testing. Ann Oncol 2018;29(5):1273-9.
- 54. Holzinger D, Wichmann G, Baboci L, Michel A, Höfler D, Wiesenfarth M, Schroeder L, Boscolo-Rizzo P, Herold-Mende C, Dyckhoff G, Boehm A, Del Mistro A, Bosch FX, Dietz A, Pawlita M, Waterboer T. Sensitivity and specificity of antibodies against HPV16 E6 and other early proteins for the detection of HPV16-driven oropharyngeal squamous cell carcinoma. Int J Cancer 2017;140(12):2748-57.
- Steinau M, Reddy D, Sumbry A, Reznik D, Gunthel CJ, Del Rio C, Lennox JL, Unger ER, Nguyen ML. Oral sampling and human papillomavirus genotyping in HIV-infected patients. J Oral Pathol Med 201:41(4):288-91.
- Gipson B, Robbins HA, Fakhry C, D'Souza G. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer. Oral Oncol 2018;77:52-6.
- 57. Kreimer AR, Johansson M, Waterboer T, Kaaks R, Chang-Claude J, Drogen D, Tjønneland A, Overvad K, Quirós JR, González CA, Sánchez MJ, Larrañaga N, Navarro C, Barricarte A, Travis RC, Khaw KT, Wareham N, Trichopoulou A, Lagiou P, Trichopoulos D, Peeters PH, Panico S, Masala G, Grioni S, Tumino R, Vineis P, Bueno-de-Mesquita HB, Laurell G, Hallmans G, Manjer J, Ekström J, Skeie G, Lund E, Weiderpass E, Ferrari P, Byrnes G, Romieu I, Riboli E, Hildesheim A, Boeing H, Pawlita M, Brennan P. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J Clin Oncol 2013;31:2708-15.
- 58. Chrysostomou AC, Stylianou DC, Constantinidou A, Kostrikis LG. Cervical Cancer Screening Programs in Europe: The Transition Towards HPV Vaccination and Population-Based HPV Testing. Viruses 2018:10(12):729.
- 59. Windon MJ, D'Souza G, Fakhry C. Treatment preferences in human papillomavirus-associated oropharyngeal cancer. Future Oncol 2018;14(24):2521-30.
- 60. Becker M, Varoquaux AD, Combescure C, Rager O, Pusztaszeri M, Burkhardt K, Delattre BMA, Dulguerov P, Dulguerov N, Katirtzidou E, Caparrotti F, Ratib O, Zaidi H, Becker CD. Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo) therapy: Diagnostic performance of FDG-PET/MRI with diffusionweighted sequences. Eur Radiol 2018;28(2):651-63.
- 61. Vainshtein JM, Spector ME, Stenmark MH, Bradford CR, Wolf GT, Worden FP, Chepeha DB, McHugh JB, Carey T, Wong KK, Eisbruch A. Reliability of post-chemoradiotherapy F-18-FDG PET/CT for prediction of locoregional failure in human papillomavirus-associated oropharyngeal cancer. Oral Oncol 2014; 50(3):234-9.